
Virtualized ICN (vICN): Towards a Unified Network
Virtualization Framework for ICN Experimentation

Mauro Sardara∗†, Luca Muscariello∗, Jordan Augé∗, Marcel Enguehard∗†,
Alberto Compagno∗, Giovanna Carofiglio∗

∗Cisco Systems †Telecom ParisTech

ABSTRACT
To assess the feasibility and potential for deployment of new net-
working paradigms such as ICN, being able to carry out large scale
experimentation and tests in real operational networks is crucial.
Various platforms have been developed by the research commu-
nity to support design and evaluation of specific aspects of ICN
architecture. Most of them provide ICN-dedicated, small scale or
application-specific environments and ad-hoc testing tools, non
reusable in other contexts nor in real-world IP deployments.

The goal of this paper is to contribute vICN (virtualized ICN), a
unified open-source framework for network configuration andman-
agement that uses recent progresses in resource isolation and virtu-
alization techniques. It offers a single, flexible and scalable platform
to serve different purposes, ranging from reproducible large-scale
research experimentation, to demonstrations with emulated and/or
physical devices and network resources and to real deployments
of ICN in existing IP networks. In the paper, we describe the ratio-
nale for vICN and its components, highlighting programmability,
scalability and reliability as its core principles. Illustration of vICN
properties is provided through concrete examples.

CCS CONCEPTS
• Networks→ Network experimentation; Network manage-
ment; Programmable networks; Network monitoring;

KEYWORDS
Deployment; Virtualization; Management; Measurements
ACM Reference Format:
Mauro Sardara, Luca Muscariello, Jordan Augé, Marcel Enguehard, Alberto
Compagno, and Giovanna Carofiglio. 2017. Virtualized ICN (vICN): Towards
a Unified Network Virtualization Framework for ICN Experimentation . In
Proceedings of ICN ’17, Berlin, Germany, September 26–28, 2017, 7 pages.
https://doi.org/10.1145/3125719.3125726

1 INTRODUCTION
The encouraging results of Information-Centric Networking (ICN)
research efforts in the last years have triggered broader industrial

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICN ’17, September 26–28, 2017, Berlin, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5122-5/17/09. . . $15.00
https://doi.org/10.1145/3125719.3125726

interest in ICN as a serious candidate to relieve future 5G network
challenges in terms of performance, scalability and cost (see e.g.,
latest ITU recommendation developed by the Study Group 13 [7]
and 5G Americas White Paper on ICN and MEC [14]). To bridge
the gap between a promising network architecture and a feasible
deployment-ready solution, experimentation at scale and in real-
world environments is a critical step. Therein lies the ability to
show clear benefits over the state of the art and to convince about
the feasibility of the integration of the technology into existing
network infrastructure.

The ICN community has largely stated the importance of a prag-
matic experimental and application-driven research approach since
its inception (see e.g. [25],[17]). Multiple tools and testbeds have
been developed for simulation and emulation (CCNx, NDN soft-
ware and testbed, CCNlite, MiniCCNx [3], MiniNDN). Most of them
have been designed to assist research, specifically on design and
evaluation of aspects of ICN architecture (e.g., caching, forwarding
or routing). They operate in dedicated fully-ICN network environ-
ments, trading-off abstraction of network characteristics for scale
and offering limited flexibility to modify core ICN features, network
topology and settings, or application APIs.

In this paper, we aim to complement existing tools with vICN
(virtualized ICN), a flexible unified framework for ICN network con-
figuration, management and control that is able to satisfy a number
of important deployment and experimentation use cases: (i) conduct
large-scale and fine-controlled experiments over generic testbeds;
(ii) instantiate reliable ICN network with real applications in proofs
of concept; (iii) deploy large networks within network for trial and
test development. Clearly, requirements are different: research ex-
perimentation needs fine-grained control and monitoring of the
network as well as reproducibility of the experiments. Prototypes
for demonstration require a high level of programmability and
flexibility to combine emulated and real network components or
traffic sources. More than in previous cases, reliability and resource
isolation is a critical property for deployments in ISP networks.

The operations required for the deployment of an ICN network
include to install/configure/monitor a new network stack in for-
warding nodes or the socket API used by applications at the end-
points. If loading a network stack from an application store into
general purpose hardware is easy to realize, a network stack has
different requirements compared to a cloud based micro-service:
ultra-reliability, high-speed and predictability, to cite a few. vICN
shares the same high-level goals as SDN/NFV architectures, but
with additional ICN-specific capabilities not typically required by
IP services. Overall, we identify three main challenges that vICN
addresses and that differentiate it w.r.t. state of the art:
(i) Programmability, i.e., the need to expose a simple and unified
API, intuitive enough to facilitate bootstrap, expressive enough

109

https://doi.org/10.1145/3125719.3125726
https://doi.org/10.1145/3125719.3125726

ICN ’17, September 26–28, 2017, Berlin, Germany M. Sardara et al.

to accommodate both resource configuration and monitoring and
flexible enough to allow the user to decide about level of control
granularity. Existing software like OpenStack, which is built as a
collection of independent components, each one following different
design patterns, does not offer a satisfactory level of programma-
bility.
(ii) Scalability: vICN aims at combining high-speed packet process-
ing, network slicing and virtualization, and highly parallel and
latency minimal task scheduling. Current systems are based on a
layered architecture that prevent fine-grained optimization, thus
limiting scalability on the long term.
(iii) Reliability: a fundamental property of vICN lies in its ability
to maintain the state of deployment, recover from failures and per-
form automatic troubleshooting. This requires the overall software
to be able to accommodate programmable function monitoring and
debugging. In existing designs, each component has independent
implementations to achieve that.

The remainder of the paper is organized as it follows. Section 2
summarizes the state of the art, before introducing vICN architec-
ture in section 3 and its implementation in section 4. Section 5
provide concrete examples of vICN in action. Section 6 concludes
the paper.

2 RELATEDWORK
Salsano et al. [19] proposed to introduce network virtualization for
ICN networks through the use of Openflow. In [16], the authors
address a similar issue and propose an architecture to perform net-
work slicing. However, [19] does not consider any network slicing
technology, and [16] misses the aspects of network management
and control. Mininet [10] makes a step in that direction and sits
closer to our objectives as it enables the creation of virtual networks
based on containers and virtual switches. Application performance
can be tested in emulated network conditions by setting parameters
such as link delays and capacity, node CPU share, etc. However,
it does not propose any slicing mechanism, and lacks support for
wireless or any control on applications or workload.

Interesting tools have also emerged from the testbed community.
Emulab is a network experimentation framework joining emula-
tion facilities with physical testbeds, but it lacks support for wire-
less topologies and offers no control over the network resources.
NEPI [8] is maybe one of the most polyvalent tools. It hides all the
complexity under a uniform programming interface. NEPI however
lacks some control granularity and specializes in the management
of resources provided by testbeds, assuming tasks such as slicing
are already performed.

The Cloud computing community has made important efforts to
facilitate the use of datacenter resources. Cloud Operating Systems
have been proposed, such as OpenStack [5], designed to manage
and monitor large-scale deployments, providing access to network,
compute and storage resources through a set of homogeneous APIs
and sub-projects. Available tools are generally oriented towards ap-
plications being deployed in a global pool of resources. Container-
specific tools such as Kubernetes [13] present some interesting
aspects in that they expose a unique consistent API for simplicity,
with however limited control granularity our purpose. Automation
is ensured by third party tools layered on top of these standard

Figure 1: vICN functional architecture

APIs, like Chef [23], which are intrinsically limited by their proce-
dural language design, where the user must make every step of the
deployment explicit, manually adapt to the current state and handle
errors. Other tools (e.g., Puppet [12]) use a descriptive language,
where the user only needs to describe his/her needs and leave the
rest to the tool. Despite the integration effort in Cloud computing,
the silos around functionalities and the proliferation of APIs appear
limiting for our purpose. The system does not enable simple setup
and control for users, nor to build applications on top.

The now joint SDN and NFV communities are maybe the closest
to our needs, at least from an architectural point of view. In [6]
for instance, the authors describe a set of design principles for the
Management and Orchestration (MANO) of virtualized network
functions (VNF). Their approach is based on a modular architecture,
clearly identifying the fundamental function such as user and VNF
description, orchestration, etc. They also point the need to ensure
reliable management by considering the lifecycle of the resource
they manage. OpenDayLight is a promising candidate framework
for building NFV capabilities, as it relies on a model-driven abstrac-
tion layer that fits with our requirements. However, this aspect is
mainly used from a software engineering point of view, and not
to offer programmability of the resource (called "micro-service").
Moreover, orchestration is layered on top of other modules that
behave as silos.

3 THE VICN FRAMEWORK
The high-level architecture of vICN, presented in fig. 1 reminds of
NFV proposals such as MANO. Our contribution is in applying the
underlying resource end-to-end and globally, and the properties
this guarantees.

3.1 Functional architecture
The Resource is the basic unit of information in vICN. It consists
of an abstract model that a set of mappers use to translate actions
on the Resource into a series of task to be executed. Resources are
stored in the Resource factory, and can be very diverse, (e.g., a
specific Virtual Machine, an application or an IP route). They can be
combined or extended to form other Resources. The vICN architec-
ture differentiates the role of users, developers, and infrastructure
providers. Developers integrate tools by creating new Resources
or extending the old ones. Both users and infrastructure providers

110

Virtualized ICN (vICN) ICN ’17, September 26–28, 2017, Berlin, Germany

Figure 2: Flow of information in vICN

use this base set of Resources to describe what they respectively
require (users) or make available (infrastructure providers).

Resources are specified according to different degrees of detail:
e.g., the infrastructure is described precisely to form a Resource
database that serves as a base for deployment. On the other hand,
user specifications might be general or abstract, and only mention
Resources of interest for the user. The role of the Resource pro-
cessor is to turn an abstract and incomplete description into a set
of Resources mapped on the infrastructure leading to a consistent
deployment. Once Resources are selected, the orchestrator trans-
lates them into a set of actions to be performed, based on the current
state of deployment and on constraints due to task synchronization
or sequentiality. The resulting actions are processed by a sched-
uler. It outputs an execution plan and dispatches parallel tasks to a
worker pool with the objective of minimizing the deployment time.

To summarize, vICN is based on twomain abstractions: Resources,
which are external units of information exposed to users, developers
and infrastructure providers, and tasks, which are internal units of
information, defined by developers, to translate Resource requests
into changes of network deployment state.

3.2 Resource model
In vICN, the internal Resource model is exposed directly to users
and developers through a query language, in the spirit of SQL or
SPARQL, which builds on and extend an object relational model [4].
The model defines a base object as a set of typed attributes and
methods, where types refer to standard integers, strings, etc., or
to newly defined object themselves. The query language built on
top of it is used to create, destroy and manipulate those objects,
either for Resource setup or to retrieve monitoring information.
This model benefits from the power and expressiveness of the
relational algebra [15] and of some key concepts of Object-Oriented
Programming, namely composition and inheritance. It serves as an
integrated interface based on both human- and machine-readable
semantics (as in YANG [1]).

Resources. Resources in vICN are logical representations of
physical and/or remote elements whose state has to be kept syn-
chronized. The state of a Resource can be affected by user queries,
by events involving Resources, or through monitoring queries is-
sued to the remote Resource. For instance, a routing component
might recompute routes when notified about a change in the set of
nodes, interfaces or links. The information flow is shown in fig. 2.

Resource state. The state of a Resource is tracked, for reliability
and consistency, by a Finite State Machine (FSM) presented in the
left part of fig. 3. The FSM models the possible states of a Resource
(rectangles, raising events) and the pending operations, or tasks,
being executed (round shapes). The transitions are dictated by user
actions or internal events and follow the typical lifecycle of an

Figure 3: vICN Finite State Machine

Figure 4: vICN partial Resource Hierarchy

object: INITIALIZE is called when the shadow Resource and its
object are being created for internal setup; CREATE and DELETE
are the respective constructor and destructor: they can create or
destroy the remote Resource and eventually set some attributes;
GET retrieves the current state of a Resource, as well as the state
of some of its attributes; UPDATE proceeds to attribute update, and
in fact runs parallel instances of attribute-FSM, as shown on the
right-hand side of the figure.

Resource mapper. For each transition between states, a devel-
oper can associate commands to be executed thanks to Resource
mappers. These commands are handled by vICN through the task
abstraction, which also inherits from the base object. They are
specialized to cope with multiple southbound interfaces such as
NETCONF/YANG, SSH/Bash or LXD REST calls (similarly to Object-
Relational Mappers such as SQLAlchemy [2]).

New tasks can be created through inheritance or composition,
using algebraic operators to inform about their parallel or sequen-
tial execution. Resource objects are equipped with similar operators,
so that inheritance and composition produce a similar composition
of tasks. Both resources and tasks define an algebra, and the sched-
uler will be able to use this property to perform calculations and
optimize the execution plan. A subset of Resources defined in vICN
is represented in fig. 4, showing in particular the four base abstrac-
tions of Node, Interface, Channel and Application from which most
Resources inherit, similarly to the model defined in [11].

111

ICN ’17, September 26–28, 2017, Berlin, Germany M. Sardara et al.

3.3 Resource processor
The resource processor plays the central role of adapting the user
requests to the platform policies and the available Resources. For
instance, an abstract Resource Node can be implemented either
as a LXCContainer or a VM. This choice (specialization step) can
be either explicitly dictated by user preferences or inferred by the
tool itself depending on the context. As another example, when
deploying an ICN forwarder on a node that runs ndnping, vICN
might prefer a NDN forwarder instance, and do the same for all
nodes of the same experiment.

The Resource processor is also in charge of mapping the Re-
sources to deploy onto available physical servers, by verifying all
the constraints/policies required by the user, the developer or by the
infrastructure provider. Such assignment can be assimilated to an
(NP-Hard) Constraint-Satisfaction Problem (CSP) [9] as the system
has to accommodate several Resources in a finite capacity system
in terms of networking, compute and memory. Both user-specified
attributes and optional infrastructure provider policies are taken
into account in the CSP as additional constraints. The output is a
mapping from specification to implementation, which is also used
to expose back monitoring to the user in a consistent way.

3.4 Orchestrator and Scheduler
The role of the orchestrator is to maintain one FSM per Resource,
and ensure they reach the state requested by the user. Its outcome is
a task dependency graph, which is shared with the scheduler. Task
dependencies are derived from Resources dependencies, structure
of the FSM, as well as from inheritance and composition constraints
related to both the Resources and the mappers.

The scheduler ensures the scalability of the deployment by sched-
uling the parallel execution of tasks over a pool of worker threads.
Given the dependency graph presented before, this corresponds to
a classical DAG scheduling problem, which has been studied in the
community [20]. Figure 5 presents a toy-scenario underlining the
need for not naive scheduling algorithm. In that small example, a
greedy selection of the task with higher distance to destination is a
sufficient heuristic to get an optimal solution and save one execu-
tion round. We remark that user interactions can cause the graph of
tasks to evolve in time and require a recomputation. Heuristics [18]
might then be preferred to optimal solutions because of their faster
execution time, while providing satisfactory performance.

Figure 5: Toy scenario - vICN scheduler

Because of its centralized architecture, vICN performance is also
impacted by the network transmission time1. We alleviate this issue
by enabling task batching, when two consecutive tasks target the
same node interface. The algebraic structure of tasks also makes
it possible to reorganize the graph structure to better optimize
execution, or to increase the ability to batch tasks.

1network round-trip-time and, for instance with TLS, session establishment time

4 IMPLEMENTATION
The flexibility of vICN lies in its modular architecture organized
around its Resource model. Various Resources can be developed to
cover a wide range of underlying infrastructure, and bring missing
functionalities such as slicing or topology management. We here
describe the current release and its set of base Resources covering
the whole ICN stack. They build on and reuse available technologies,
selected with scalability and reliability in mind.

4.1 vICN codebase
A first version of vICN has been open-sourced within the Com-
munity ICN (CICN) project [21], as part of the Linux Foundation’s
Fast Data I/O effort. The code, written in Python, is released under
the Apache v2.0 license. This release implements all the building
blocks described in fig. 1 and is mature enough to launch complex
ICN deployments. Alongside, we distribute a prepackaged LXD
image containing the full CICN suite (including forwarders, the
ICN stack, and useful applications), so that a full ICN network can
be bootstrapped in tens of seconds or minutes. This suite includes
a high speed forwarder based on the VPP framework [24], which
already handles almost 1Mpps per thread in its first release.

4.2 Slicing
In addition to bare-metal deployments, vICN is able to slice nodes
and links offered by the infrastructure through a set of technologies
that we describe here. This is crucial for proper experiment isolation,
and to realize separate control and management planes.

Virtual nodes can be implemented either as containers or as
virtual machines. We chose containers as the core technology (via
the use of LXD) because they are more lightweight and efficient
(thanks to zero-copy mechanisms, ZFS filesystem and simplified
access to the physical resources). Increased security concerns and
limitations such as sharing the same kernel are not limiting since
most ICN functions are implemented in userland.

Network is shared at layer 2 via OpenVSwitch [22], which pro-
vides advanced functionalities, such as VLAN and OpenFlow rules,
required by our wireless emulators and to bridge external real
devices to the virtual environment. vICN fully isolates the deploy-
ment’s network from the outside world by creating a single and
isolated bridge per deployment, using iptables as a NAT to pro-
vide external connectivity. On top of that, we reduce the load of
the bridge and isolate control traffic from the data plane. Indeed,
we directly link connected containers, through pairs of Virtual
Ethernet interfaces (veth), thus bypassing the bridge. Connected
containers that are spawned across different servers in a cluster are
transparently connected through a GRE tunnel.

Finally, vICN has to arbitrate for shared resources on the physical
host, be it container or interface names (with constraints such as
the 16-character limit on Linux), VLAN IDs, and even MAC or IP
address depending on the level of required network isolation. It is
important to do such “naming” properly not only for correctness,
but also to simplify debugging and troubleshooting. vICN further
enforces consistent names that uniquely identify a Resource, which
allow for faster detection and recovery when the tool restarts or
has to redeploy the same experiment.

112

Virtualized ICN (vICN) ICN ’17, September 26–28, 2017, Berlin, Germany

4.3 IP and ICN topologies
Using the mechanisms described previously, it is possible to build a
layer-2 graph on top of which vICN can set up IP and ICN connec-
tivity. For IP networking, a centralized IP Allocation Resource is in
charge of allocating IP prefixes and addresses to the different net-
work segments of the graph. Global IP connectivity is then ensured
by computing the routes to be installed on the nodes. vICN provides
a generic routing module implementing various algorithms (such
as Dijkstra or Maximum-Flow) taking as an input a graph (layer-2)
and a set of prefix origins (allocated IP addresses). It outputs a set of
routes, encoded as vICN Resources. Route setup is then driven by
a Routing Table Resource, from which the Linux and VPP routing
tables inherit.

The process is similar for ICN, except that we first build (IP or
Ethernet) faces based on a configurable heuristic (e.g., L2 adjacency).
We can then reuse the same routing module by feeding it with the
face graph, and the set of prefix origins found in attributes of content
producer Resources. The corresponding Routing Table is, in this
case, implemented by the ICN forwarder. We remark that the use of
multipath routing schemes (e.g., Maximum Flow) makes more sense
in this context. The process results in a deployment accommodating
IP and ICN coexistence, enabling performance comparison of both
architectures at the same time.

4.4 Link emulation
A feature that is missing from most tools is the ability to measure
the performance of applications running on top of virtual networks
with specific bandwidth or propagation delays. vICN offers Re-
source attributes for the Linux Traffic Control layer (tc) in order to
shape link bandwidth and emulate constrained networks.

A complementary aspect is the ability to use emulated radio Re-
sources as an alternative to real hardware in a transparent fashion.
Two types of radio channel are currently supported, WiFi and LTE,
both based on real-time simulation features of the NS-3 simulator.
The vICN radio channel Resource is implemented as a drop-in re-
placement of a regular radio link Resource. It connects stations and
access point (or UEs and Base Station) through a configurable radio
channel, and hides the internal wiring from the user. The emulation
then takes care of all relevant wireless features such as beaconing,
radio frequency interference, channel contention, rate adaptation and
mobility. Real-time emulation scales by using multiple instances
orchestrated by an overarching mobility management Resource
in vICN, communicating in real time with the different emulators.
This process can collect relevant information from the simulation,
and expose it to the internal model and thus monitoring.

4.5 Monitoring capabilities
Monitoring is natively implemented as part of vICN as a transversal
functionality, building on the object model introduced in section 3.
The query language offered by vICN allows to query any object
attribute, including annotations made by the Resource processor
and orchestrator about the host or the deployment state of the
Resource. This is the same interface that is used by the orchestrator
to query the current state of a remote Resource, to communicate
with the emulators, or for the user to interact with vICN in order to
change an attribute or create a new Resource at runtime. Its syntax

Figure 6: Mobile World Congress topology

closely matches SQL syntax. More precisely a query object contains
the following elements: the object name, a query type (create, get,
etc.), a set of filters and attributes, eventually completed by attribute
values to be set.

For periodic measurements such as link utilization, vICN pro-
vides a daemon that can be installed on the nodes and exposes
information via a similar interface. Communication between the
components is ensured using the IP underlay setup by vICN.

5 EXAMPLES
We now illustrate some characteristics of vICN using a particular
use case: mobile video delivery. This section is not meant to be
exhaustive, but to illustrate how the design of vICN helped us solve
practical challenges, and to emphasize general properties of the
design that are relevant to other use-cases.

5.1 Use case description
The recent years have seen drastic changes in the video consump-
tion patterns that put much pressure on delivery networks: the
shifts in video quality (up to 4K), from broadcast to on-demand and
from fixed to wireless and mobile networks. Our objective was to
show that ICN addresses these challenges, using mechanisms like
caching or multihoming over heterogeneous networks. Figure 6
represents an example of such a video delivery network. It consists
of four parts: an heterogeneous WiFi/LTE access network with
multihomed video clients; a backhaul network aggregating the re-
sulting traffic with workload from emulated clients; a core network
composed of two nodes; and producers serving 4K video. All nodes
have a fully-featured ICN-stack. The core nodes use a VPP-based
high-speed forwarder, the others a socket-based one. Overall, the
deployment consists of 22 LXC containers, 3 real devices connected
to the virtual network, 22 emulated links (including WiFi and LTE
channels), and one physical link between DPDK-enabled network
cards (the core). We use a pre-packaged container image containing
all the necessary software to reduce the bootstrap time.

5.2 Scalability
The simplification offered by vICN is illustrated the following num-
bers: during the deployment, vICN created about 800 Resources
compared to the 104 declared in the topology file, a reduction in

113

ICN ’17, September 26–28, 2017, Berlin, Germany M. Sardara et al.

Figure 7: vICN bootstrap time vs number of worker threads

complexity of 85-90%. More than 1500 bash commands were exe-
cuted, either directly on physical machines, or on LXC containers.
This even underestimates the number of Bash commands an op-
erator would type to deploy an equivalent topology, as some are
batched for efficiency reasons (e.g., we insert all IP routes for a
given node in a single command).

Figure 7 then shows the time taken by vICN to deploy the topol-
ogy as a function of the number of dedicated threads. We deployed
this topology on a Cisco UCS-C with 72 cores clocked at 2.1 Ghz.
We first note that multi-threading provides a sevenfold reduction in
bootstrap time, and that the topology can be deployed in about two
minutes. The observed gains are due to the I/O-intensive nature of
tasks, which spend most of their lifetime waiting for return values.
This reduction is specific to our implementation and our simplistic
scheduling heuristic. The shape of the curve remains nonetheless
interesting, with a performance bound appearing. This is due to
the underlying task graph, whose breadth intrinsically limits the
number of tasks that can be run in parallel.

5.3 Programmability
One advantage of our Resource model (see section 3.2) is the use of
inheritance. It allows the user to choose his level of granularity de-
pending on his or her needs and expertise. In particular, the user can
remain oblivious to the underlying technology used to deploy Re-
sources.We used that feature to scale the demonstration on a cluster
of servers connected through a switch instead of a single powerful
server. In that configuration, linking containers on different hosts
requires to connect them to virtual bridges on their respective hosts,
and to link these bridges through a L2-tunnel. The two deployments,
shown in fig. 8, require different Resources and tasks. However,
they can be realized with the same vICN specifications, thanks to
the Link abstract Resource. Here, vICN completely abstracts the
implementation complexity and enables painless switching from
one deployment to the other.

The deployment of containers running VPP is another example
of vICN’s ability to shield a user from implementation and configu-
ration details thanks to its Resource model. Indeed, VPP uses DMA
access to contiguous memory areas named hugepages. Both the
host and the containers have to be configured to allocate and share
enough of these hugepages. On top of starting and setting up the ap-
plication on the container, VPP thus requires to execute commands
on the physical node and to change the container’s configuration

Figure 8: Alternative vICN topology deployments on single
server and a cluster.

before its creation. In vICN, simply linking VPP to a container is
enough to perform the bootstrap. The tool is then able to change
the other Resources (e.g., use a VPP-enabled container instead of
the standard one) and to run all the necessary commands.

The flexibility of the framework also allowed us to switch Re-
sources inmany occasions. During our tests, we replaced real tablets
by emulated nodes to generate test workloads. During the demon-
strations, we could also seamlessly use a real LTE mobile core in-
stead of an emulated one. It only required to change one Resource
in the specification and did not affect the rest of the scenario.

5.4 Monitoring and Reliability
We conclude by highlighting how the Resource model enables mon-
itoring and debugging. As described in section 4.5, vICN exposes
a query language based on its underlying model for monitoring.
This language can be used to collect information about the network
status at different time scales: link utilization, radio status, cache
status etc. vICN thus integrates all information about the deploy-
ment in a consistent and query-able representation, building on the
model introduced in section 3. In the same way vICN provides an
API to navigate through structured logs that may assist the whole
process of software development.

6 CONCLUSION
The ICN community has developed multiple tools for simulation
and emulation to assist design and experimentation. In this paper,
we introduce vICN (virtualized ICN), a flexible unified framework
for ICN network configuration, management, and control to com-
plement existing tools, especially for large scale and operational
networks deployment. vICN is an object-oriented programming
framework rooted in recent advances in SDN/NFV research that
provides higher flexibility than existing virtualization solutions. It
is specifically tailored to ICN, but its modular design allows for
extensions to other technologies. While most of current software
is developed in silos, with significant limitations in terms of opti-
mization, vICN offers the capability to optimize each component of
the virtual network to provide carrier-grade service guarantees in
terms of programmability, scalability and reliability.

The vICN design, which we illustrate briefly through a concrete
example, comes with a free software implementation available in
the Linux Foundation for the community with multiple objectives:
demonstrations, research and field trials. We leave for future work
the detailed presentation of vICN characteristics by means of bench-
marking in different use cases.

114

Virtualized ICN (vICN) ICN ’17, September 26–28, 2017, Berlin, Germany

REFERENCES
[1] Martin Bjorklund. 2010. YANG - A Data Modeling Language for the Network

Configuration Protocol (NETCONF). RFC 6020. (Oct 2010). DOI:https://doi.org/
10.17487/rfc6020

[2] Amy Brown. 2012. The architecture of open source applications (SQLAlchemy).
Vol. 2. Kristian Hermansen.

[3] Carlos Cabral, Christian Esteve Rothenberg, and Maurício Ferreira Magalhães.
2013. Mini-CCNx: Fast prototyping for named data networking. In Proceedings
of the 3rd ACM SIGCOMM workshop on Information-centric networking. ACM,
33–34.

[4] Christopher John Date and Hugh Darwen. 1998. Foundation for object/relational
databases: the third manifesto. Addison-Wesley Professional.

[5] The OpenStack Foundation. 2017. https://www.openstack.org/. (2017).
[6] European Telecommunications Standards Institute. 2014. Network Functions

Virtualisation (NFV); Management and Orchestration. Technical Report GS NFV-
MAN 001. European Telecommunications Standards Institute (ETSI).

[7] ITU. March 2017. Recommendation ITU-T Y.3071 Data Aware Networking
(Information Centric Networking): Requirements and Capabilities. In ITU Study
Group 13 Final Report. https://www.itu.int/rec/T-REC-Y.3071-201703-P

[8] Mathieu Lacage, Martin Ferrari, Mads Hansen, Thierry Turletti, and Walid Dab-
bous. 2010. NEPI: using independent simulators, emulators, and testbeds for easy
experimentation. SIGOPS Operating Syst. Rev. 43, 4 (2010), 60–65.

[9] Alan K Mackworth. 1992. Constraint satisfaction problems. Encyclopedia of AI
285 (1992), 293.

[10] Mininet. 2017. http://mininet.org/. (2017).
[11] NS3. 2017. The Network Simulator 3. https://www.nsnam.org/. (2017).
[12] Puppet OpenStack. 2017. https://wiki.openstack.org/wiki/Puppet. (2017).
[13] Production-Grade Container Orchestration. 2017. https://kubernetes.io/. (2017).
[14] 5G Americas White Paper. December 2016. Understanding Information-Centric

Networking and Mobile Edge Computing. ... http://www.5gamericas.org/

files/3414/8173/2353/Understanding_Information_Centric_Networking_and_
Mobile_Edge_Computing.pdf

[15] J. Paredaens. 1978. On the expressive power of the relational algebra. Inform.
Process. Lett. 7, 2 (1978), 107 – 111. DOI:https://doi.org/10.1016/0020-0190(78)
90055-8

[16] Ravishankar Ravindran, Asit Chakraborti, Syed Obaid Amin, Aytac Azgin, and
Guoqiang Wang. 2016. 5G-ICN : Delivering ICN Services over 5G using Network
Slicing. (2016). http://arxiv.org/abs/1610.01182

[17] Future Internet Research and Experimentation. 2017. https://www.ict-fire.eu.
(2017).

[18] Rizos Sakellariou and Henan Zhao. 2004. A hybrid heuristic for DAG scheduling
on heterogeneous systems. In Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International. IEEE, IEEE, 111.

[19] S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, and L. Veltri. 2013. Infor-
mation Centric Networking over SDN and OpenFlow: Architectural Aspects
and Experiments on the OFELIA Testbed. Comput. Netw. 57, 16 (Nov 2013),
3207–3221.

[20] Oliver Sinnen. 2007. Task scheduling for parallel systems. Vol. 60. John Wiley &
Sons.

[21] The Linux Foundation. 2017. Fast Data project (fd.io) Community ICN (CICN).
https://wiki.fd.io/view/Cicn. (2017).

[22] The Linux Foundation. 2017. Open vSwitch. http://openvswitch.org/. (2017).
[23] The Linux Foundation. 2017. OpenStack Chef. https://wiki.openstack.org/wiki/

Chef. (2017).
[24] The Linux Foundation. 2017. Vector Packet Processing - Fast Data I/O. https:

//wiki.fd.io/view/VPP/. (2017).
[25] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick

Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
Data Networking. SIGCOMM Comput. Commun. Rev. 44, 3 (Jul 2014), 66–73. DOI:
https://doi.org/10.1145/2656877.2656887

115

https://doi.org/10.17487/rfc6020
https://doi.org/10.17487/rfc6020
https://www.openstack.org/
https://www.itu.int/rec/T-REC-Y.3071-201703-P
http://mininet.org/
https://www.nsnam.org/
https://wiki.openstack.org/wiki/Puppet
https://kubernetes.io/
http://www.5gamericas.org/files/3414/8173/2353/Understanding_Information_Centric_Networking_and_Mobile_Edge_Computing.pdf
http://www.5gamericas.org/files/3414/8173/2353/Understanding_Information_Centric_Networking_and_Mobile_Edge_Computing.pdf
http://www.5gamericas.org/files/3414/8173/2353/Understanding_Information_Centric_Networking_and_Mobile_Edge_Computing.pdf
https://doi.org/10.1016/0020-0190(78)90055-8
https://doi.org/10.1016/0020-0190(78)90055-8
http://arxiv.org/abs/1610.01182
https://www.ict-fire.eu
http://openvswitch.org/
https://wiki.openstack.org/wiki/Chef
https://wiki.openstack.org/wiki/Chef
https://wiki.fd.io/view/VPP/
https://wiki.fd.io/view/VPP/
https://doi.org/10.1145/2656877.2656887

	Abstract
	1 Introduction
	2 Related work
	3 The vICN framework
	3.1 Functional architecture
	3.2 Resource model
	3.3 Resource processor
	3.4 Orchestrator and Scheduler

	4 Implementation
	4.1 vICN codebase
	4.2 Slicing
	4.3 IP and ICN topologies
	4.4 Link emulation
	4.5 Monitoring capabilities

	5 Examples
	5.1 Use case description
	5.2 Scalability
	5.3 Programmability
	5.4 Monitoring and Reliability

	6 Conclusion
	References

