
A popularity-based approach for effective
Cloud offload in Fog deployments

Marcel Enguehard
Cisco Systems & Telecom ParisTech

Giovanna Carofiglio
Cisco Systems

Dario Rossi
Telecom ParisTech

Abstract—Recent research has put forward the concept of Fog
computing, a deported intelligence for IoT networks. Fog clusters
are meant to complement current cloud deployments, providing
compute and storage resources directly in the access network –
which is particularly useful for low-latency applications. How-
ever, Fog deployments are expected to be less elastic than cloud
platforms, since elasticity in Cloud platforms comes from the
scale of the data-centers. Thus, a Fog node dimensioned for
the average traffic load of a given application will be unable
to handle sudden bursts of traffic. In this paper, we explore
such a use-case, where a Fog-based latency-sensitive application
must offload some of its processing to the Cloud. We build an
analytical queueing model for deriving the statistical response
time of a Fog deployment under different request Load Balancing
(LB) strategies, contrasting a naive, an ideal (LFU-LB, assuming
a priori knowledge of the request popularity) and a practical
(LRU-LB, based on online learning of the popularity with an
LRU filter) scheme. Using our model, and confirming the results
through simulation, we show that the LRU-LB achieves close-to-
ideal performance, with high savings on Cloud offload cost with
respect to a request-oblivious strategy in the explored scenarios.

I. INTRODUCTION

In [1], the authors highlight the need for deploying compute
platforms geographically close to end-user devices. It is in
particular necessary to enable low-latency or location-aware
applications. Thus, the authors introduce the concept of Fog
computing, a highly-virtualized platform that sits in IoT access
networks and is complementary to the Cloud. Since then,
interest has grown in the research community for Fog com-
puting, encompassing areas such as workload placement [2],
caching [3], [4], or application profiling [5].

As stated in [1], the Fog layer is not intended as a replace-
ment for the Cloud, but rather as a complementary compute
and storage platform. For instance, with frameworks such as
AWS Greengrass [6], Fog operators can use their own devices
(e.g., an IoT gateway or a local compute node) to perform
some stateless pre-processing on data on its path to the Cloud.
In addition, Fog nodes do not enjoy the same elasticity as
Cloud datacenters. Indeed, while Cloud platforms inherently
scale thanks to their size and their high number of tenants, Fog
compute have strong physical limits that cannot be infringed.
Thus, they are not fit to handle sudden bursts of requests,
for instance in the case of flash crowds. In such a case, the
natural solution is to offload part of the computation normally
done in the Fog to the Cloud [7]. At the same time, if done
incorrectly, Cloud offload could actually worsen the response
latency. Furthermore, renting compute and storage power in

the Cloud is expensive, as opposed to user-owned Fog devices.
In this paper, we thus look at the problem of Cloud-offload
and investigate the following question: how to minimize cloud
offloading costs while offering statistical latency guarantees
in case of sudden bursts of requests in a Fog network?

In particular, we explore how understanding request patterns
can be used to optimize the usage of the Fog platform.
Such understanding is typically obtained through Information-
Centric Networking (ICN), whose name-based forwarding
exposes request semantic at the network layer. Moreover,
name-based forwarding also enables connection-less com-
munications. For instance, ICN packets can convey request
semantic to the network while keeping the communication
secure through object-based security. Finally (and crucially
for our architecture), it provides application ubiquity, as the
forwarding is performed using an identifier instead of a locator.
Our approach leverages all of these ICN features, using
naming as a proxy to understand request popularity patterns
to optimally exploit the caching resource of the Fog node.

Without loss of generality, we adopt a per-application view
and consider a single Fog node, with compute and storage
capabilities, that receives homogeneous requests from a single
stateless application (e.g., lambda function). The Fog provider,
who handles the Fog infrastructure, offers statistical latency
guarantees to the application developer. However, the Fog node
has fixed capacities and cannot handle a high arrival rate for a
prolonged period. Thus, it offloads some of its processing to a
Cloud platform, where the operator rents compute and storage
resources, while still respecting the latency agreement.

To that end, we introduce LFU-LB, a new (ideal) load-
balancing strategy between the Fog and Cloud that exploits
perfect knowledge of request popularity, as well as LRU-LB,
a new (practical) load-balancing strategies able to learn the
request arrival pattern with minimal knowledge. Using an ana-
lytical model, we show the sizeable benefits of LFU-LB over
a naive randomized load-balancing strategy, and additionally,
show that LRU-LB performance is within 6% of the LFU-
LB bound. Summarizing our contributions: (i) we propose
a queueing model for the performance of a Fog-enabled
application under different offloading strategies (Section III);
(ii) we propose two new offloading strategies, called LFU-LB
and LRU-LB, respectively based on knowledge and inference
of request popularities (Section IV); (iii) we use an offline
method for optimizing the performance of LFU-LB and LRU-
LB, providing principled bounds on the achievable gain under



each strategy (Section V-B); (iv) we validate the model with a
packet-level simulator, that we make available as open-source
(Section V-C).

II. PROBLEM DESCRIPTION

A. Reference Fog architecture

We consider an IoT architecture composed of three main
components: (i) IoT networks, where sensors, actuators, and
users are connected; (ii) an access network which connects
these IoT networks together and with the internet; and (iii)
a Cloud platform, used for compute and storage. On top of
this cloud platform, a Fog compute node is available in the
access network. Both the Fog and the Cloud are equipped with
caches that follow the Least-Recently-Used (LRU) policy. A
load-balancer is in charge of redirecting incoming requests
from the IoT networks to either Cloud or Fog. We summarize
that architecture in Figure 1. We consider Fog applications
that work in the following way: (i) the application retrieves
raw data from one or several sensor nodes (e.g., an image
or a temperature from several sensors); (ii) it performs some
computation to transform the raw data into processed data
(e.g., JSON file indicating detected shapes, or the average of
the measured temperatures); (iii) the processed data is retrieved
by users or actuators which use it to make decisions. As
security is paramount for Fog applications [1], both processed
and raw data are encrypted during network transmissions, for
example with (D)TLS as common nowadays. In particular, we
consider a pull-based model driven by client requests, of which
we illustrate two of the possible paths in Figure 1. The user
application starts by issuing requests (step 1). These requests
reach the load balance function (for the sake of illustration,
we only show cases where it decides to route the requests to
the Fog node). In the Fog node, the request is matched against
a cache (step 2) for the availability of processed data. In case
of a cache hit (red dots · · ·), the processed data is sent back
directly to the user. In case of a cache miss (green dashes ),
the raw data must be retrieved from the sensor (step 3), before
the computation can take place (step 4) and the processed data
can then be served back to the user (step 5).

B. Fog vs Cloud load-balancing

IoT applications can roughly be categorized as: (i) latency-
critical, when processed data must be received within 1-10ms,
(ii) latency-sensitive, where the timescale of user interaction
is in the order of 100ms [8], and (iii) latency-tolerant, that
have no specific delay constraint. Whereas latency-critical
applications cannot run in the Cloud (and would rather run in
the device or at Fog level), latency-tolerant applications can be
scheduled off-peak in the Fog. We thus argue that offloading
strategies are most relevant for applications of the latency-
sensitive class, where the computing bottleneck in the Fog
may force to offload part of request processing to the Cloud.
At the same time, the use of faraway Cloud resources not only
increases the cost for the Fog operator but may additionally
increase the service latency. As such, the Fog operator needs
to carefully decide which requests to offload to the Cloud.

User Sensor

Cache Compute

Cache Compute

Cloud

Core

Fog

upstream

1

2

3

4

5
1

2

3

Load-
Balancer

Fog – Cache hit
Fog – Cache miss

Storage DB

Access

Fig. 1: Reference IoT, Fog and Cloud architecture

To devise such strategies, we assume that the application
runs both in the Cloud and in the Fog, and consider costs
for the Fog operator. In the Cloud, resources are elastic and
one can increase the capacity as the incoming load increases.
Furthermore, we consider that the Cloud always stores the
raw data for archiving and monitoring purposes (we neglect
the cost of raw data archival as it must be paid in any case).
This comes on top of the cache for processed data, whose
size is defined by the amount of storage rented in the cloud.
Moving data to/from the Cloud through the core network also
has a cost for the Fog operator. On the other hand, application
deployment in the Fog comes at no cost for the Fog operator
(since it owns the infrastructure). As Fog nodes have limited
storage, the Fog cache is only used for processed data. The Fog
node also has a finite amount of computing resources, which
must be equally shared between all incoming requests. Thus,
in case of a high load, the Fog node might have a high response
time or even start dropping requests, which may violate the
agreement set up with the application Fog developer.

The need for a proper offloading function φ between the
Fog and Cloud resources thus becomes clear: such a function
should minimize the cost of renting Cloud resources while
respecting the agreed upon latency constraint, which we
outline below (and formalize in Section III):{

min. Cost(φ)

s.t. E[T (φ)] + κσ(T (φ)) ≤ ∆
(1)

where T is the stochastic variable describing the system
response time. We use a statistical latency constraint, which
guarantees that the bulk of requests are served under ∆
(where κ allows to more precisely tune the fraction of in-
profile requests). The advantage of such formulation is clear
considering that it enables us to express the constraint in closed
form in our queueing model, which simplifies tractability. At
the same time, we acknowledge that Fog operators may be
interested in tuning their offer to different operational points



TABLE I: Variables used in the model

Application specific
Space of possible requests R
Cumulated arrival rate λ
Necessary work per request Xcomp

Raw data size sraw
Processed data size sproc
Application latency constraint ∆

Optimization variables
Load-balancing function φ ∈ (0, 1)R

Cloud cache size scache,c
Total request serving time T (φ, scache,c)
Cost function Π(φ, scache,c)

Fog characteristics
Fog compute capacity Ccomp,f

Fog cache size scache,f
Access network capacity Cacc,u

d

Access network propagation time τaccess
TLS establishment delay τTLS,f

Cloud characteristics
Cloud compute capacity Ccomp,c

DB query delay τDB

Core network capacity Ccore

Core network propagation time τcore
TLS establishment delay τTLS,c

Cloud pricing
Compute price pc
Network price pn
Storage price ps

Miscellaneous
Cache hit probability hf

c
(r, s

cache,
f
c

)

in the cost-vs-delay trade-off. While this formulation leads to
optimal results in static settings, it is also a useful reference to
evaluate the performance of dynamic approaches, as discussed
in Section VI.

III. AN ANALYTICAL MODEL FOR FOG NETWORKS

To understand the performance of a given load-balancing
function, we define a queueing model that describes the
systemic behaviour of the IoT architecture. We introduce the
necessary variables for our model in Table I.

A. Application model and request distribution

Let us consider a single application running on a sliced
Fog deployment. This application is described by its latency
constraint ∆, its raw data size sraw, its processed data size
sproc, and its job size Xcomp. In particular, we assume that
sraw and sproc are constant, while Xcomp is a stochastic
variable following an exponential distribution.

Let now R be the total number of possible requests, and
{r1, . . . , rR} these requests. Following previous work, we
consider that the request popularity distribution q follows a
Zipf distribution [3], [9], [10], [11], i.e., for a request r arriving
in the system, q(k) = P[r = rk] = γk−α where α > 0 is the
skew parameter and γ a normalization factor. In particular,
requests arrivals are user-driven, and are thus well modeled by
a Poisson process of parameter λ; it follows that the arrival
process for the request rk is a Poisson process of parameter
λk = q(k)λ and we assimilate {r1, . . . , rR} to {1, . . . , R}.
Additionally, the use of an independent requests model (IRM)

Cloud

Compute
M/M/∞

Compute
M/M/1

PS

Fog

𝜆

𝜆f 𝜆f

𝜆f,nh

𝜆f,m

𝜆c 𝜆c

𝜆c,m 𝜆c,m

𝜆c1-Φ
Φ

hc

1-hc

hf

1-hf

𝜆

𝜆f,m

Access ↓
M/M/1-PS

Access ↑
M/M/1-PS

Core ↓
M/M/1-PS

Cache
TLS

M/D/∞

TLS
M/D/∞

DB
M/D/∞

TLS
M/D/∞

LB

Cache

Fig. 2: Queueing network

is known to under-estimate of the cache benefits [12], [13], so
we expect our results to be conservative.

B. Queueing model

Whenever relevant, we follow seminal work [7], [14],
[15], [16] to select the most fitting queue to describe each
resource. Particularly, we select an M/M/1-PS queue for the
Fog compute as in [7], [14]: processor-sharing policy makes
sense here since the Fog has a fixed amount of resources
that must be shared between all the incoming requests. On
the other hand, as we consider that the Cloud compute is
elastic and scales on demand, we represent it by an M/M/∞
queue, and we represent Cloud-database access as a constant-
time M/D/∞ queue. For network resources, we chose the
M/M/1-PS model, as common in the literature [7], [15], [16].
As load-balance decisions and cache lookup should be done
at line-rate, we consider that their impact is minimal w.r.t.
other queues; and since they do not impact the comparison
between Cloud and Fog service time anyway, we neglect them
in what follows. Finally, we model the TLS endpoints as
M/D/∞ queues, neglecting the computation time of the TLS
handshake. Assuming that TLS is running in version 1.3, only
1 round-trip is necessary to establish the TLS connection, i.e.:

τTLS,f = 2τacc

τTLS,c = 2(τacc + τcore).

The resulting queueing system is depicted in Figure 2. One
can note that the request transmission time is uniquely taken
into account in the TLS queue: since IoT requests have a
negligible size, their transmission time is indeed dominated
by their propagation time.

We represent the load-balancing strategy by a function
φ : {1, . . . , R} 7→ [0, 1], which associates to each request a
probability of being forwarded to the Fog. In particular, given
a popularity distribution q and a load-balancing strategy φ,
the popularity distribution of requests arriving in the Fog is
qf (r) = γfφ(r)q(r), where γf is a normalization factor. For
computing the hit probability in the Fog cache, we use the
formula proposed by Che et al. [17]:

hf (r) ≈ 1− e−qf (r)ts (2)



TABLE II: Arrival rate per queue in network
L

B Load-balancer
λ

Access down.

Fo
g

TLS - Fog
λf =

∑
r∈R φ(r)λq(r)

Cache - Fog
Access up.

λf,m =
∑

r∈R φ(r)(1− hf (r))λq(r)
Compute - Fog

C
lo

ud

TLS - Cloud
λc =

∑
r∈R(1− φ(r))λq(r)Cache - Cloud

Core down.
DB

λc,m =
∑

r∈R(1− φ(r))(1− hc(r))λq(r)
Compute - Cloud

where ts is the unique root of
∑R
r=1(1−e−qf (r)t) = scache,f .

We use a similar model for the Cloud cache, where it suffices
to replace the probability φ by its complement 1− φ.

C. Computing the statistical latency

First, let us point out that since processor-sharing queues are
quasi-reversible processes, the exit distribution of an M/G/1-
PS queue is a Poisson process (Theorem 3.6 of [18]). This
is also true for the M/G/∞ queue [19], justifying that all the
queues have a Markovian input. We can then easily derive the
expected sojourn time in each of the queues. In particular, the
expected service time for requests with job size X and Poisson
arrival rate λ in an M/G/1-PS of capacity C is given by:

E[T ] =
1

(µ− λ)
where µ =

C

E[X]
(3)

We can compute the arrival rate at each queue depending on
the offloading strategy φ and the cache hit probabilities hf and
hc at the Fog and Cloud caches respectively, obtained using
Equation (2). We report the arrival rate per queue in Table II.

Computing the standard deviation of the queue is a more
complicated task, as it depends on the service time distribution.
However, since all M/G/1-PS queues have an exponential
distribution for the job size in our model (M/M/1-PS queues),
we can use the result of Ott [20]:

σ2(T ) =
(2 + λµ)µ2

(1− λµ)2(2− λµ)
(4)

We thus get the equation for the expected queueing delay
and the variance of the queueing delay in Equation (5). We
explicit the expected latency and variance for the service time
in the Fog Tf (r) and Tc(r) in the cloud in Table III, where the
expected response time and the variance of M/M/1-PS queues
(such as E[Tacc,d] and σ2[Tacc,d] for the access downstream)
can be derived from Equation (3) and Equation (4) respec-
tively.

E[T ] =
∑
r

q(r)
[
φ(r)E[Tf (r)] + (1− φ(r))E[Tc(r)] + E[Tacc,d]

]
σ2(T ) =

∑
r

q(r)
[
φ(r)σ2(Tf (r)) + (1− φ(r))σ2(Tc(r)) + σ2(Tacc,d)

]
(5)

TABLE III: Expected value and variance for the sojourn time
in the Fog and Cloud

Fog
E[Tf ] = τTLS,f + (1− hf (r))

(
τTLS,f + E[Tacc,u] + E[Tcomp,f ]

)
σ2(Tf ) = (1− hf (r))

(
σ2(Tacc,u) + σ2(Tcomp,f )

)
Cloud
E[Tc] = τTLS,c + (1− hc(r))

(
τDB +

E[Xcomp]

Ccomp,c

)
+ E[Tcore,d]

σ2(Tf ) = (1− hc(r))
(

E[Xcomp]

Ccomp,f

)2
+ σ2(Tcore,d)

D. Computing the cost function

The hourly operation cost consists of a network, a compute,
and a storage term. We approximate that the compute power
rented in the Cloud is synchronized with the incoming load
(i.e., the Cloud spawns a container process at each new
request). In particular, the cost of running the Cloud increases
proportionally to the requested load: p(c, s, n) = pcc+ pss+
pnn, where c (resp. s) is the amount of compute (resp. storage)
resources rented on the Cloud, and n is the egress Cloud traffic.

1) Compute cost: We consider an elastic consumption for
the compute resources in the cloud. If Qcomp,c(t) is the
number of customers in the Cloud compute M/M/∞ queue,
the instantaneous number of instantiated cloud compute plat-
forms is: c(φ, scache,c)t = Qcomp,c(t) According to [19], the
expected value for c(φ, scache,c) is thus:

E[c(φ, scache,c)] =
λc,m(φ, scache,c)

Ccomp,c/E[Xcomp]

2) Storage cost: The storage cost depends on the cache size
in the cloud: s(φ, scache,c) = scache,csproc

3) Network cost: For each incoming request, sproc is trans-
ferred downstream as a reply. Given that λc (in Hz) requests
are forwarded in average to the cloud every second, 3600λc
objects of size sproc are forwarded every hour. Thus:

E[n(φ, scache,c)] = (3600λc(φ))sproc

Thus, the total cost function reads:

Π(φ, scache,c) =
pcλc,m(φ, scache,c)

Ccomp,c/E[Xcomp]
+ psscache,csproc

+ pn(3600λc(φ))sproc

(6)

IV. LOAD-BALANCING STRATEGIES

The objective cost function defined by Equation (6) and
the stochastic latency expressed in Equation (5) constitute
the building blocks of the optimization problem defined in
Equation (1). At the same time, the problem is still not
well specified since the optimization variables (φ, scache,c) ∈
[0, 1]R× [0, R] reside in high-dimensional space. Clearly, this
is not only impractical but also irrelevant, as we argue that
to reduce both delays and costs, a load balance function
should divert popular content toward the local Fog resource
as long as this does not introduce a CPU bottleneck. We
can thus reduce the large space of LB functions φ to a



0.0 0.2 0.4
Blind probability φB

0

.2

.4

R
es

p.
ti

m
e

(s
)

1

3

5

E[T ] + σ[T ]

(a) Blind-LB, scache,c=3.1·105

101 103 105

Filter size kLFU

0

.2

.4

1

3

5

C
os

t
($

/h
)

Compute Network

(b) LFU-LB, scache,c = 0

Fig. 3: Response time (left) and cost (right) of the system vs
φ for the Blind- and LFU-LB at fixed cache size

few relevant families. In this section, we present three load-
balancing strategies to which we particularize the optimization
problem. Specifically, we introduce a baseline Blind load-
balancer strategy (Section IV-A), as well as two strategies
based on request popularity: LFU-LB (Section IV-B) and LRU-
LB (Section IV-C).

A. Blind load-balancer

In this case, we consider that the load-balancer has no infor-
mation about the request (e.g., because it is encrypted), thus it
blindly balances all traffic with i.i.d. probability φ(r) = φB .
In particular, Equation (1) can be rewritten as such:min. Π(~φB , scache,c)

s.t. E[T (~φB , scache,c)] + κσ
(
T (~φB , scache,c)

)
≤ ∆

with ~φB = (φB , . . . , φB). In this particular case, since
(φB , scache,c) ∈ [0, 1]×[0, R], the problem is easy to optimally
solve numerically.

As such, system performance depends on two variables: the
probability φB and the cloud cache size scache,c. For the sake
of illustration, we investigate their respective importance in
the setup described further along in Section V-A, using the
parameters reported in Table IV for the numerical evaluation.
In particular, we examine the variation of the costs and
constraint functions depending on either φB of scache,c.

In Figure 3a, we represent the variation of the constraint
function (+, left side) and of the compute (•, right side)
and network (×, right side) costs for a fixed cache size
scache,c = 3.1 · 105. We do not represent the storage cost
as it is constant (since scache,c is fixed). The first takeaway
is that, as expected from the costs in Table IV, the network
cost is dominant w.r.t. the compute and memory cost. We also
notice that the constraint function diverges towards +∞ when
φB grows close to 0.45, as the Fog compute queue becomes
unstable and cannot handle the request rate.

In Figure 4a, we next vary the cache size scache,c for a
fixed load-balancing probability φB = 0.42 (the sweet spot
in Figure 3a). We show the statistical response time (+, left
side), and the compute (•, right side) and memory (H, right

103 105 107

Cache size scache,c

.098

.1

.102

R
es

p.
ti

m
e

(s
)

0

.25

.5

E[T ] + σ[T ]

(a) Blind-LB, φ = 0.42

103 105 107

Cache size scache,c

.098

.1

.102

0

.25

.5

C
os

t
($

/h
)

Compute Memory

(b) LFU-LB, kLFU = 6.1 · 105

Fig. 4: Response time (left) and cost (right) of the system vs
scache,c for the Blind- and LFU-LB at fixed φ

side) costs. We do not represent the network cost since it
is constant when φ is constant. First, we note that varying
the cache size has a limited impact on both the cost and the
constraint function. Furthermore, in this case, given that the
compute is almost one order of magnitude more expensive than
the memory and the cloud popularity distribution is sufficiently
skewed, it is interesting to cache highly popular requests.

B. LFU-LB strategy

Let us now consider the case where the load-balancer is
aware of network-names. This can, for instance, be done
using ICN, where the content name is directly encoded in the
network layer as the forwarding instruction. A network-layer
load-balancer would then be able to distinguish requests. Note
that nothing prevents this name from being entirely or partially
encrypted for security reasons, as the LB does not require any
understanding of the name to derive its popularity.

We then consider the following strategy: forward the most
popular requests to the Fog until you reach the latency
constraint, and offload the least popular ones to the cloud. We
call this strategy LFU-LB (for Least-Frequently Used, since
it is reminiscent of a cache with the LFU eviction policy). In
particular, if kLFU request classes are forwarded to the Fog:

φ(r) = δr≤kLFU
=

{
1 if r ≤ kLFU
0 otherwise.

In other words, the LFU-LB selects the kLFU most popular
classes for processing in the Fog. Thus, Equation (1) becomes:min. Π(~δkLFU

, scache,c)

s.t. E[T (~δkLFU
, scache,c)] + κσ

(
T (~δkLFU

, scache,c)
)
≤ ∆

with ~δkLFU
= (δ1≤kLFU

, . . . , δR≤kLFU
). Like the Blind-LB,

we reduced the problem to a two-dimensional optimization.
The rationale behind this strategy is simple: to optimize

the hit rate in the Fog cache, we artificially reduce the space
of incoming requests at the Fog. Thanks to this much-higher
hit rate, we can then forward more requests in the Fog
without overloading the access upstream or the Fog compute.
In Figure 3b (resp. Figure 4b), we represent the evolution of



the cost and constraint functions while setting scache,c = 0
(resp. kLFU = 6.1 · 105) for the setup in Table IV. At a
first glance, Figure 3b indicates that a proper choice of kLFU
allows to decrease the network cost at levels unreachable with
the Blind-LB while respecting the constraint. Furthermore, as
in Section IV-A, the dominant factor in terms of cost is the
number of offloaded requests. Both of these insights point
towards LFU as a good strategy for Fog/Cloud load-balancing.

Additionally, Figure 4b shows that for small values of
scache,c, the compute cost stays constant. This is due to the
popularity distribution at the Cloud cache, which only contains
the long tail of the Zipf distribution. Thus, for small cache
sizes, the hit probability is low and the cache almost useless.

C. The LRU-LB strategy

While the LFU-LB is efficient, we are aware that it is an
ideal policy, difficult to realize in practice if the popularity
distribution is not known in advance (as estimating the popu-
larity is difficult and slow1). To derive a practical LB policy,
we argue that the LB does not need to learn the popularity of
each specific request. It only needs to flag whether a request
is popular, acting as a low-pass filter. Let us now consider a
virtual filter that, for each incoming request, updates a small
fixed-size database of requests, which are evicted according
to the LRU policy. As this database only stores names of
previously seen requests, but never stores any content, its size
is small. It is immediate to recognize that such an LRU filter
would probabilistically store only the most popular requests
names. Compared to the aforementioned counter solution
for the LFU-LB, this has four main advantages: (i) it does
not require prior knowledge of the application; (ii) it keeps
memory constrained to the size of the filter, instead of the
size of the catalogue; (iii) it is flexible w.r.t. changes in
the popularity distribution; (iv) it requires minimal effort for
integration in ICN forwarders as the LRU structure is already
used for caches.

We thus propose the LRU-LB strategy where the LB is
equipped with an LRU filter that performs the forwarding
function; i.e., for each incoming request, a name hit means
forwarding the request to the Fog and a miss means offloading
the request to the Cloud. This approach to optimize cache hit
is similar to a 2-LRU cache, whose effectiveness is already
known [21], but, to the best of our knowledge, the use
of an LRU filter for load-balancing and offload is a novel
contribution. Indeed, in our case, we do not only consider the
cache hit, but the impact of the filter size on the service time
of the Fog compute. This leads to a different optimization
problem, that we now explicit.

To incorporate LRU-LB in the model, we must compute
the load-balancing function φ depending on the filter size
kLRU . Since our filter is a virtual LRU cache, we have
φ(r) = hkLRU

(r) where hkLRU
(r) is the hit probability for the

request r in an LRU cache of size kLRU with input distribution

1This requires either offline analysis of the popularity distribution, or
to keep counters of incoming requests. Both solutions are not flexible to
popularity changes and are difficult to implement efficiently.

TABLE IV: An example application

Deployment Application
Ccomp,f 3GHz R 107

scache,f 1GB λ 2kHz
Cacc 10Gbps E[Xcomp] 107 CPU cycles
τacc 2 ms sraw 1MB

Ccomp,c 2GHz sproc 10KB
τDB 1ms α 1
Ccore 1Gbps ∆ 100ms
τcore 20ms κ 1

Cloud pricing
pn $0.08 per GB
ps $0.004446 per GB and hour
pc $0.033174 per vCPU and hour

q, which can be derived straightforwardly from Equation (2).
Integrating this in Equation (1), we end up with a constraint
and a cost functions that depend only on kLRU and scache,c:min. Π(~hkLRU

, scache,c)

s.t. E[T (~hkLRU
, scache,c)] + κσ

(
T (~hkLRU

, scache,c)
)
≤ ∆

with ~hkLRU
= (hkLRU

(1), . . . , hkLRU
(R)). Compared to the

LFU-LB, realizing and optimizing the LRU-LB only requires
knowing the popularity skewing factor α and the arrival rate
λ instead of the actual per-content popularity distribution.

V. EVALUATION

To understand the performance of our strategies, we conduct
in this section a thorough evaluation of their behaviour. In
Section V-A, we describe the setup used to perform the
evaluation. In Section V-B, we use the analytical model to
infer the general behaviour of each LB strategies depending
on the most important parameters of the system. Finally, in
Section V-C, we use simulation to augment our evaluation
with the packet-level performance of the strategies.

A. An example application

Let us consider a deployment with the characteristics de-
scribed in Table IV. We select an application with a medium
compute difficulty (10ms on a 1GHz processor) and medium
processed data size. For our Fog deployment, we consider that
our application has a slice of a compute platform amounting
to a 3GHz CPU and 1GB of cache. Finally, to make the
evaluation more realistic, we particularize it using public
pricing of the Google Compute infrastructure as of October
2017, set the delay target to ∆ =100ms and the multiplicative
standard-deviation factor to κ = 1.

To find the optimal behaviour of each strategy, we numeri-
cally solve the optimization problems defined in Section IV. In
particular, we use the Method-of-moving-asymptotes [22] in
its NLopt implementation [23]. We complement our queueing
model with a packet-level simulator, consisting of about 2.3k
lines of C code, that we make available as open-source
software for the community2. This simulator enables easy
construction and evaluation of queueing models without the

2https://github.com/marceleng/fog-cloud-offload-sim/



TABLE V: Optimal costs and parameters per LB

Method E[φ] scache,c Π
Blind 0.42 3.1 · 105 3.4$/h
LFU 0.844 (kLFU = 6.1 · 105) 0 0.95$/h
LRU 0.840 (kLRU = 1.3 · 106) 0 0.97$/h

complexity of full-blown network simulators. In particular, it
is useful to quickly prototype systems such as the Fog/Cloud
offload problem and gain insight on their performance depend-
ing on the various parameters.

B. Numerical solution

In a first step, we show in Table V the optimized values for
our example application. We first note that using the LRU and
LFU-LB allows the Fog to handle more than twice as many
requests as with the Blind-LB. This results in a decrease in
offload cost of more than 70%. Furthermore, it shows that the
LRU-LB has similar performances to the LFU-LB, with a 2%
relative difference in offload cost.

In Figure 5a, we show the influence of the Fog cache size
w.r.t. to the optimal cost for the Blind-, LFU-, and LRU-
LB strategies. This figure points out that the LFU and LRU
strategies are especially interesting for mid-range scenarios.
Indeed, if scache,f is small, they do not benefit from the much-
improved hit-rate in the cache seen in other cases. On the other
hand, if scache,f is big, the Blind-LB strategy also provides a
high hit-rate, thus closing in on LFU and LRU. However, for a
reasonable cache size (between 0.1% and 1% of the catalogue
size, see top x-axis), both the LFU- and the LRU-LB offer
large gains in terms of offloading cost. Furthermore, this graph
confirms that the LRU-LB is an extremely good approximation
of the ideal LFU-LB, and regardless of the Fog cache size.

Similar remarks can be made if we study various skews
in the popularity distribution. In Figure 5b, we vary the
parameter α in the Zipf popularity distribution. For small α
values, the popularity distribution converges towards a uniform
distribution, thus diminishing the impact of popularity-based
LBs. For large α values, the relative importance of the first
items is such that the cache hit is always high, regardless of
the LB strategy. However, for α ∈ [0.5, 1.1], the LFU- and
LRU-LB strategies allow for a largely reduced optimal cost
for both Fog cache sizes that we tested. Furthermore, we see
that the LFU- and LRU-LB strategies with scache,f = 104 are
more efficient than the Blind-LB strategy with scache,f = 105.
This indicates that our strategies also allow for more efficient
provisioning of Fog resources. Once again, we note that the
performance of the LRU-LB is close to the LFU-LB, varying
by at most 6% (for α = 0.8).

Finally, we consider the impact of the arrival rate on the
efficiency of our scheme in Figure 5c. Interestingly enough,
the optimal cost increases linearly w.r.t. the arrival rate for
all three cases, with slopes at 3.0 · 10−3 $/Hz for the Blind-
LB, 7.9 · 10−4 $/Hz for the LFU-LB, and 9.5 · 10−4 $/Hz
for the LRU-LB. This confirms that the LFU- and LRU-LB
strategies cope better with increased loads (e.g., flashcrowds)
than the Blind-LB. This is typically due to the improved

100 101 102 103 104 105 106

Fog cache size scache,f

0

2

4

O
pt

im
al

co
st

($
/h

)

1e–5% 1e–4% 1e–3% 0.01% 0.1% 1% 10%

(a) Fog cache size scache,f

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Popularity parameter α

0

2

4

O
pt

im
al

co
st

($
/h

)

Blind LB
LFU LB
LRU LB

scache,f = 105

scache,f = 104

(b) Zipf parameter α

2000 4000 6000 8000 10000
Arrival rate λ (request/s)

0

10

20

O
pt

im
al

co
st

($
/h

)
Blind LB

LFU LB

LRU LB

(c) Arrival rate λ

Fig. 5: Cost of the Blind-, LFU-, and LRU-LB letting the
application-independent parameters vary

hit rate at the Fog cache, which absorbs a large part of the
increased arrival rate. Particularly, if the cost of the Blind-LB
diverges with respect to the LFU-LB and the LRU-LB for an
increasing arrival rate, their ratio stays however constant. The
ratio between the absolute costs for the LFU-LB (LRU-LB)
over the Blind-LB is of 3.8× (3.2×)3. Thus, when the arrival
request rate increases, the relative gain of using the LFU-LB
(LRU-LB) over the Blind-LB also increases, which shows the
LRU- and LRU-LB to be quite robust to high arrival rates.

C. Packet-level simulation

In the previous section, we derived some statistical insights
that showed potential benefits for using the LFU- and LRU-
LB. However, these insights are based on the smoothed
behaviour of the system and do not reflect its packet-level
behaviour. We thus build a simulator and run a simulation
campaign to complement the numerical insights gathered so
far. In Figure 6, we show for instance the empirical distribution

3The relative cost gain of the LFU-LB (LRU-LB) over the Blind-LB
(ΠBlind−LB − ΠLRU−LB)/ΠBlind−LB is deceptive here as it asymp-
totically grows to 100%, already reaching 80% at 10kHz



0.000 0.025 0.050 0.075 0.100 0.125 0.150
Response time (s)

10−4

10−2

100
P

er
ce

nt
ag

e
of

re
qu

es
ts

Threshold
exceeded
(p=0.04)

Tail

Fog compute (p=0.14)

Fog cache (p=0.70)

Cloud (p=0.16)

Fig. 6: Distribution of the response time for the LRU-LB (k =
1.3 · 106) for 10 simulations of 108 arrivals

Blind LFU LRU LRU?
0.00

0.25

0.50

0.75

1.00

R
eq

ue
st

pa
th

re
pa

rt
it

io
n

0.000

0.025

0.050

0.075

0.100

T
hr

es
ho

ld
ex

ce
ss

ra
te

Fog cache Fog compute Cloud Excess rate

Fig. 7: Request repartition (grey bars, left y-axis) and threshold
excess rate (red line, right y-axis) for the Blind-, LFU-, LRU-
LB (with optimal k and extra-budgeted k? tunings)

(EDF) of service times for 109 arrivals over 10 runs of the
simulator for the application described in Section V-A using
the LRU-LB with the optimal value kLRU = 1.3 · 106. For
the sake of readability, different components (i.e., fog cache,
compute, and cloud) are highlighted with different shades
of grey. Note that, as expected, a significant fraction of the
requests hit the Fog cache. At the same time, it can be seen
that the Fog compute exhibit a long tail due to the processor-
sharing scheduling, which causes service times to grow up
to possibly several seconds in the worst case. We also gather
that while the statistical constraint in Equation (1) is respected,
the probability of a packet being served in more time than the
target deadline ∆ = 0.1s is 4%.

Clearly, whereas our objective function and statistical la-
tency constraint are specific, the LRU-LB mechanism and the
optimization framework are general enough to accommodate
other operational points in the cost-vs-latency space, which can
simply be done by altering the LRU-LB filter size. An easy way
to tune this trade-off is, for instance, to let the multiplicative
factor of the latency standard deviation grow beyond κ > 1 in
Equation (1), to ensure that a larger fraction of the requests fit
the target latency profile. Another option is to allow a specific
budget increase w.r.t. the optimal cost, thus computing first the
optimal cost and then the value of kLRU corresponding to that
budget increase. As an illustration, we depict the breakdown of
the requests (grey bars, left y-axis) and the fraction of requests
exceeding the delay target (red line, right y-axis), in Figure 7
for the Blind- and LFU-LB, and for two settings of the LRU-
LB (the cost-optimal one, and the LRU? which corresponds to
a 25% budget increase). It shows that the extra +25% budget
(1.21$ overall hourly cost) would allow reducing the fraction
of requests served in more than ∆ by 2 orders of magnitude
(to 0.02%), additionally cutting the tail to sub-second service
time (0.5sec) in the worst case. As stated earlier, this could
be simply achieved by shrinking the LRU-LB filter size to
k?LRU−LB = 7.3 · 105 < kLRU−LB = 1.3 · 106 – which is
intuitive, since reducing the filter size reduces the probability
that less popular content is forwarded to the Fog. Notice that,
despite the budget increase with respect to the minimum cost,
the LRU? operating point still corresponds to a 61% reduction

with respect to the offload budget necessary with the Blind-
LB strategy. Whereas where to exactly place the cursor in the
cost versus latency trade-off is a Fog operator decision, the
LRU-LB filter size constitutes a unique and simple knob to
tune the system to reach the desired operational point.

VI. DISCUSSION AND FUTURE WORK

In this paper, we use the LRU-LB as an approximation for
the LFU-LB. However, setting the size of the filter currently
requires offline computation depending on the arrival rate λ
and the Zipf popularity parameter α. While λ is easy to
measure live and Figure 5c seems to indicate that the optimal
filter size increases linearly with λ, the linear coefficient
depends on α, which is notably difficult to compute online.
As a next step, we thus set out to find an online method that
approximates the optimal filter size without any knowledge of
the popularity distribution using simple telemetry such as the
Fog cache hit rate or the request service time. As stated in
Section V-C, it should also be tunable to the Fog operator
preferred point on the cost-vs-delay trade-off. As a start, we
might consider the following strategy: (i) find a maximum
filter size k(m)

LRU (considering a low α and a high λ) and set
the filter size as such; (ii) keep the filter size to k

(m)
LRU , but

only forward to the Fog requests in position up to k′ < k
(m)
LRU ,

where k′ is tuned through a control-loop feedback mechanism
depending on the operational point wished by the operator.
Such a method would also be able to adapt to changes in the
popularity distribution or the arrival rate.

Furthermore, our evaluation is limited to a single appli-
cation. In future work, we plan to look at the performance
of the LFU- and LRU-LB depending on the relative values
of sproc and Xcomp: the size of the data vs the amount of
compute necessary to produce it. Having a high sproc and low
Xcomp would, for instance, reduce the incentive of hitting the
cache, and thus limit the benefits of our strategies. Finally,
to encompass all possible applications, we must look at other
queueing models. In particular, we might want to look at GPU-
powered applications (e.g., image processing), whose com-
pute model differs from processor-sharing of exponentially-
distributed jobs.



Finally, our model should encompass other characteristics
of ICN. For instance, the object-based security model allows
for secure transfer of content without the need for TLS. In
particular, it would mean discarding the round-trip time taken
into account by the TLS queues in our model. Furthermore, the
use of in-network request aggregation and in-network caching
would diminish the arrival rate in our system and might change
the content popularity distribution.

VII. RELATED WORK

The importance of locating compute resources topolog-
ically close to users had been put forward under diverse
forms in the community: Fog computing [1], Mobile-Edge-
Computing [24], hybrid Cloud [7]. In particular, Niu et al. [7]
explore a similar problem to ours: the use of a local cloud
infrastructure to handle sudden bursts of traffic. They also use
a Markov-chain based model for computing the expected re-
sponse time and devise a scheduling algorithm between hybrid
and public cloud using an optimization problem under budget
constraints. However, they do not exploit any knowledge of
the request popularity, thus falling under the hard limit that
we exposed for the Blind-LB. Malawski et al. [25] look
at costs optimization between a hybrid cloud and multiple
public clouds with different pricing models under a deadline
constraint. However, they focus on task optimization, looking
at a model closer to scheduling for scientific computing rather
than live optimization of user requests.

Using popularity to load-balance content in ICN networks
has already been explored. In [9], the authors propose to
count incoming packets and use exponential smoothing. As
argued in Section IV-C, this approach is not flexible to
popularity changes and requires knowledge of the application.
Furthermore, the authors aim at load-balancing packets over
homogeneous paths, whereas the Fog/Cloud offload problem
is essentially heterogeneous. Similarly, Carofiglio et al. [10]
propose the use a k-LRU filter to learn popularity for load-
balancing ICN interests over multiple paths. They then mea-
sure per-name latency to optimize the distance to the next ob-
ject. However, the authors do not specify the settings of the k-
LRU filter, and only consider the effect of their load-balancing
on the data creation process. Finally, in [4], the authors use the
ICN-Fog node as a classifier between static and dynamic data,
thus preventing upstream caches to store dynamic data. They
do not, however, consider the data processing that happens in
many Fog applications.

VIII. CONCLUSION

In this paper, we looked at the problem of computation
offload for Fog computing deployment. Using queueing theory,
we built an analytical framework to evaluate the performance
of a given offloading strategy. We then presented three of-
floading strategies, that we evaluated through our analytical
model. We showed that strategies using request popularity
to load-balance requests performed measurably better than
an optimized Blind load-balancer. We also proved that our
approximated strategy, the LRU-LB, degrades performances

by less than 6% compared to the optimal LFU-LB. Finally,
using a packet-level simulator, we demonstrated that our LRU-
LB reduces the Cloud offload cost by 70% while keeping the
threshold excess rate stable.

ACKNOWLEDGMENTS

This work benefited from the support of NewNet@Paris,
Cisco’s Chair “NETWORKS FOR THE FUTURE” at Telecom
ParisTech (https://newnet.telecom-paristech.fr).

REFERENCES

[1] F. Bonomi, et al. “Fog computing and its role in the internet of things.”
In Proc. 1st Edition Workshop Mobile Cloud Computing, ACM, 2012.

[2] K. Hong, et al. “Mobile fog: A programming model for large-scale
applications on the internet of things.” In Proc. 2nd SIGCOMM
Workshop Mobile Cloud Computing, ACM, 2013.

[3] J. Khan, et al. “A content-based centrality metric for collaborative
caching in information-centric fogs.” In IFIP-Networking - ICFC, 2017.

[4] M. Wang, et al. “Fog computing based content-aware taxonomy for
caching optimization in information-centric networks.” In IEEE Conf.
Comput. Commun. Workshops, May 2017.

[5] Z. Chen, et al. “An empirical study of latency in an emerging class
of edge computing applications for wearable cognitive assistance.” In
Proc. 2nd ACM/IEEE Symp. Edge Computing, ACM, 2017.

[6] “Aws greengrass.” https://aws.amazon.com/greengrass.
[7] Y. Niu, et al. “Handling flash deals with soft guarantee in hybrid cloud.”

In Proc. INFOCOM, IEEE, 2017.
[8] R. B. Miller. “Response time in man-computer conversational transac-

tions.” In Proc. AFIPS Fall Joint Comput. Conf., 1968.
[9] T. Janaszka, et al. “On popularity-based load balancing in content

networks.” In Proc. 24th Int. Teletraffic Congr., p. 12, 2012.
[10] G. Carofiglio, et al. “Focal: Forwarding and caching with latency

awareness in information-centric networking.” In Globecom Workshops,
IEEE, pp. 1–7, 2015.

[11] L. Breslau, et al. “Web caching and zipf-like distributions: Evidence
and implications.” In Proc. INFOCOM, vol. 1, IEEE, 1999.

[12] C. Imbrenda, et al. “Analyzing cacheable traffic in isp access networks
for micro cdn applications via content-centric networking.” In Proc. 1st
ACM SIGCOMM Conf. Inform.-Centric Networking, Sep 2014.

[13] S. Traverso, et al. “Temporal locality in today’s content caching: why it
matters and how to model it.” ACM SIGCOMM Comput. Communication
Review, vol. 43, no. 5, 2013.

[14] B. Urgaonkar, et al. “An analytical model for multi-tier internet services
and its applications.” In ACM SIGMETRICS Performance Evaluation
Review, vol. 33, 2005.

[15] M. Nabe, et al. “Analysis and modeling of world wide web traffic for
capacity dimensioning of internet access lines.” Performance evaluation,
vol. 34, no. 4, 1998.

[16] J. Boyer, et al. “Heavy tailed m/g/1-ps queues with impatience and
admission control in packet networks.” In Proc. INFOCOM, vol. 1,
IEEE, 2003.

[17] H. Che, et al. “Hierarchical web caching systems: Modeling, design and
experimental results.” J. Select. Areas in Commun., vol. 20, no. 7, 2002.

[18] F. P. Kelly. Reversibility and stochastic networks. Cambridge University
Press, 2011.

[19] G. F. Newell. “The m/g/∞ queue.” J. Appl. Math., vol. 14, no. 1, 1966.
[20] T. J. Ott. “The sojourn-time distribution in the m/g/1 queue by processor

sharing.” J. of Appl. Probability, vol. 21, no. 2, 1984.
[21] D. Shasha and T. Johnson. “2q: A low overhead high performance buffer

management replacement algoritm.” In Proc. 20th Int. Conf. Very Large
Databases, 1994.

[22] K. Svanberg. “The method of moving asymptotes—a new method for
structural optimization.” Int. J. Numerical Methods in Eng., vol. 24,
no. 2, 1987.

[23] S. G. Johnson. “The NLopt nonlinear-optimization package.” http://ab-
initio.mit.edu/nlopt.

[24] Y. C. Hu, et al. “Mobile edge computing—a key technology towards
5g.” ETSI white paper, vol. 11, no. 11, 2015.

[25] M. Malawski, et al. “Cost minimization for computational applications
on hybrid cloud infrastructures.” Future Generation Comput. Syst.,
vol. 29, no. 7, 2013.


